
AJLA–TS White Paper 1

Disclaimer: This White Paper is issued for information only. It does not constitute an official position of
America’s Job Link Alliance–Technical Support (AJLA–TS), AJLA, or its members. While the authors have used
their best efforts in preparing this White Paper, neither the authors nor AJLA–TS guarantee the accuracy,
relevance, or completeness of the information or any linked information presented, referenced, or implied. All
critical information should be independently verified. AJLA–TS declines all responsibility for any errors and any
loss or damage resulting from use of the contents of this White Paper. AJLA–TS also declines responsibility for
any infringement of any third party's Intellectual Property Rights (IPR), but will be pleased to acknowledge any
IPR and correct any infringement of which it is advised.

Copyright Notification: No part of this document may be reproduced except as authorized by written
permission. The copyright extends to reproduction in all media.
© 2014 AJLA–TS. All rights reserved.

Ruby on Rails: The Whats, Whys,
and Hows
Joe Francis, Brooke Patterson

February 2014

In 2012, America’s Job Link Alliance–Technical Support (AJLA–TS)
partnered with the Delaware Department of Labor to design a new
resume builder for our America’s JobLink (AJL) application. The fast
timeline combined with complex business and technical
requirements meant a “business as usual” approach would not be
successful. Thinking outside the box led us to Ruby on Rails (Rails),
an open source web development framework written in the Ruby
programming language. If “Ruby on Rails” sounds like a cross
between a tennis bracelet and a theme park ride, read on. This
white paper will answer the whats, whys, and hows of Rails and
explain its role in both the resume builder project and
comprehensive revision of AJL.

AJLA–TS White Paper 2

BACKGROUND

AJLA–TS launched its new resume builder in the
state of Delaware on March 18th, 2013, only nine
months after the project start date. Leadership from
the Delaware Department of Labor reports highly
favorable feedback from the field. Said one job
seeker, “I purchased a similar product for my home
computer. It is not even as good as what you offer
and I had to pay money for it.” The resume builder’s
success in Delaware proved the viability and
desirability of using Rails for future AJL projects. But
let’s backtrack a bit to examine what prompted our
search for a different development framework in
the first place.

The requirements
for the new
resume builder
reflected recent
shifts in job search
and recruitment
practices. Today’s
job seekers and
employers expect
mobile
accessibility, email
alternatives like
instant messaging
and text
messaging, and
social media
integration.
With ongoing
staff reductions

in American job centers, the new resume builder
had to minimize staff intervention through
intuitive, user-friendly design. It also needed to
accommodate ever-shortening attention spans by
dramatically decreasing the time required to
produce a quality resume—all this and more,
while still complying with federal reporting
requirements.

Not only did Delaware demand a cutting-edge
product, they wanted it fast. We soon realized
that meeting these expectations would be nearly
impossible within AJL’s existing Microsoft

Windows and ColdFusion framework. While AJL’s
original architecture has served our customers well
for nearly 15 years, it’s showing its age in many
ways. To keep up with increasingly rapid
developments in technology we needed to explore
alternatives.

With no time for a learning curve, we began with a
skills inventory of our programming staff. We
rejected platforms that were incompatible with our
current system, and gave preference to those
known for rapid development. Lastly, we asked
ourselves, “Which solution makes the best business
sense in the long run?” We wanted a sustainable
path to the future, not a band-aid fix. The answer
was clear: develop the project using Ruby on Rails
deployed to Linux servers.

THE WHATS

Ruby is an open-source programming language
created in the mid-1990s by the Japanese computer
scientist, Yukihiro “Matz” Matsumoto. Ruby is often
described as an “elegant” language, because of its
concise, logical syntax. It requires approximately
50% less code to accomplish the same task in Ruby
as it does in Java or C++. Ruby’s efficiency is even
more apparent in a ColdFusion to Ruby comparison
as seen in the graphic below.

AJLA–TS White Paper 3

Ruby’s ease-of-use and active global user
community have consistently kept it among the top
10 most popular programming languages in the
world according to most industry measures. In
2013, it ranked as the fourth most popular coding
language according to CodeEval. These results were
drawn from a sample size of over 100,000
development challenges on CodeEval’s
programming competition platform.

Ruby on Rails, often shortened to “Rails,” is a “full-
stack” (end-to-end) framework for developing web
applications. It was built using the Ruby
programming language by Danish programmer and
Ruby enthusiast, David Heinemeier Hansson, and
released in 2004. Rails consists of a large, open
source library of software administration tools
(RubyGems), and an application programming
interface (API) that defines how software
components should interact (1).

RubyGems allows programmers to freely share Ruby
software packages (gems) that extend or modify
functionality within Ruby applications. Free access
to gems means programmers don’t have to
constantly reinvent the wheel. The Rails API
documents conventions that guide and simplify

Ruby development. Although there may be more
than one way to accomplish a task, both the Rails
API and community encourage the use of a standard
or “Rails way.”

“The Rails way” is to host Rails applications on
Linux. Linux is a free operating system used as an
alternative to Windows. Linux runs everywhere—
from your home wireless router, to your Android

phone, to Amazon’s web server
farm, to the largest supercomputers
in government and industry, even
the White House (2). Linux comes in
various packages or “distributions”
designed for different uses. AJLA–TS
uses the Ubuntu Server distribution.
NASA also uses Ubuntu to collect
data from spacecraft, satellites, and
other exploratory ventures (3).

Rails, hosted on Linux, is popular
with start-ups and large-scale
companies alike. Countless small
applications run on Rails and Linux,
as do many well-known websites,
such as Chowhound, Get
Satisfaction, GitHub, Groupon, Hulu,
SlideShare, SpiceWorks, Twitter, and
Yellow Pages. AJLA–TS has used a
Rails product, Redmine, as our issue

tracking system for many years. We also host our
source code repositories in Subversion for Rails on a
Linux server.

THE WHYS

Now that you have a basic understanding of Ruby,
Rails, and Linux, we can tackle the question, “Why
Rails?” A comprehensive analysis of Rails’ strengths
is beyond the scope of this paper, so we’ll focus on
those strengths most pertinent to the resume
builder project and AJL development in general.

The number one benefit most people associate with
open source solutions is cost savings. Our entire
suite of development and production tools for the
resume builder project was free. While “freeware”
is a bit of a misnomer (businesses must still invest in

AJLA–TS White Paper 4

hardware, staff, support, etc.), open source
solutions do typically offer a lower total cost of
ownership than proprietary solutions (4). Open
source products carry lower administration,
hardware, upgrade, and of course, licensing costs.
Ruby code in particular is simple, well-structured,
and thus easy to maintain. This helps make Rails not
just inexpensive in the short-term, but highly cost-
effective in the long-term. Simply avoiding the
procurement, legal, and licensing delays associated
with proprietary software provides notable cost
savings. After all, time is money.

This brings us to perhaps
the most talked about (or
more accurately, blogged
about) Rails advantage:
time to market. As noted
by RedKivi Consulting,
“The biggest challenge in
the Software Industry is
to ‘Ship Usable Code On
Time.’ Most projects are
delayed causing
intangible increase in
costs in terms of adverse
business impact and
missed opportunities”
(6). Rails, known for high-
velocity development, is the natural choice for
projects with short timelines. And what project
doesn’t have a short timeline these days?

Some of Rails’ speed comes from the streamlined
nature of coding in Ruby. One of Ruby’s
fundamental precepts (supported by vast, open
source template libraries) is DRY, “Don’t Repeat
Yourself.” A wide variety of free Rails automation
tools, like Vagrant and Chef, provide additional time
savings. Automated management of development,
test, and production environments leads to
increased quality and faster delivery. Furthermore,
by automating menial, repetitive tasks, Rails frees
up human resources for more creative,
collaborative activities. This makes Rails ideal for
developing custom web applications that stand out
from the competition—a critical consideration as
Delaware and all of our customers strive to be the

top recruitment and job matching source in their
states.

Speed is part and parcel of another Rails trait
pertinent to our discussion: agility. Unlike many
widely-used proprietary frameworks, Rails is
tremendously nimble. To stay competitive, we must
be quick on our feet as we respond to rapid changes
in business and technology. Rails also supports agile
development practices like continuous customer
feedback through quick delivery of prototypes. This
is particularly helpful in projects with a lengthy
“discovery phase,” where requirements are

determined and may
evolve during the
course of
development. The
resume builder project
fit this description, as
do many AJL
development and
implementation
projects.

As previously
mentioned, we
selected Rails with the
future in mind, not for
the resume builder

project alone. Lower cost of ownership,
development speed, agility—all of these advantages
mean little without stability. Predicting the
longevity of software (or any product for that
matter) is far from an exact science. Still, several
signs point to the staying power of Rails. Open
source solutions are gaining popularity worldwide,
even in the government sector (7). The Rails user
community is thriving and constantly contributing
new features and functionality. The latest version,
Rails 4.0.2, was released in December 2013, which
makes Rails more state-of-the-art than Microsoft’s
ASP.NET. So, how long will Rails be around? In the
absence of a crystal ball, we turned to our
knowledge of IT history. Software that is simple to
use, easy to scale, and capable of delivering a
quality product tends to stick around. Rails fits that
bill.

“Many high-profile consumer Web firms are
choosing Ruby on Rails to rapidly build scalable
web applications. Ruby on Rails has the potential to
emerge as a strong alternative platform to
traditional choices based on Java and .NET for next-
generation enterprise applications, as companies
seek improved agility, development speed, and
time to market” (5).

Eric Knipp, Managing Vice President at Gartner

AJLA–TS White Paper 5

THE HOWS

Armed with new tools and a new development
stack, our team tackled the resume builder. Of
course, the rest of the AJL application was (and still
is) written in ColdFusion and hosted on Windows.
Mixing an application between two development
platforms poses major challenges. We took it as a
non-negotiable goal, however, to make the
integration as simple and transparent to the user as
possible. The look and feel of the new resume
builder does differ from the legacy application, but
it appears as a different section of the site rather
than a separate application.

Out of practical necessity, both the Rails and
ColdFusion sides of the
application work with the
same SQL Server
database. The entire site
runs under one domain
with one Secure Sockets
Layer (SSL) certificate, and
all logins, authentication,
and timeout logic are
handled in one place. A
solution involving Rack
middleware in the Rails
side and simple REST web
services in the ColdFusion side provides seamless
navigation between both areas of the application.

Overall, the resume builder was constructed to
work within the confines of the legacy system
without making any major compromises in the new
code base. While a layer or “shim” of compatibility
code was required, it’s invisible to the user and was
designed with an eye towards its eventual removal.
Integrating the two systems in this way is a solid
accomplishment of which AJLA–TS is quite proud.

By all accounts, the resume builder project was one
of the largest victories in recent memory. First and
foremost, it was delivered on time without the need
of additional programming staff. The entire
application is mobile-capable, and the look and feel
(including instructional text and labeling) is easily
customizable to fit the unique requirements of each

of our customers. In fact, this same support can be
used to provide native foreign language support if
needed.

AJLA–TS plans to build on the success of the resume
builder project by continuing to port additional
sections of the AJL application to Rails. A piecewise
porting approach is preferable in many ways to a
wholesale port. A wholesale port simply takes too
long, while state and federal mandates ensure you
are trying to hit a moving target. Breaking the
project into bite-sized chunks is much more tenable,
as demonstrated with the resume builder.

We are currently working on the remaining self-

service portions of the
site. These portions are
most closely related to
the resume builder and
will benefit the most
from mobile capabilities
and a new unified
communications and
notification layer that will
allow the user to select
whether they are best
contacted via email, text
message, or even via
Facebook or other social

networking sites. Once the self-service side of AJL is
done, we will move on to other sections of the
application.

SUMMARY

The decision to revise the AJL application in Rails
was not taken lightly, nor was it made out of
personal preference. Rather, after carefully
analyzing the constraints and demands of the
resume builder project (and projects to come), Rails
stood out as our best chance at success.

None of this is to say that Rails is the only way to
develop software successfully. Many shops employ
various languages, frameworks, and techniques to
great effect. A key part of our analysis was to make
sure we best utilized the skills and talents we
already have at AJLA–TS. Other solutions may be

“After researching the market, Ruby on Rails
stood out as the best choice. We have been
very happy with that decision. We will continue
building on Rails and consider it a key business
advantage” (8).

Evan Williams, Creator of Blogger, ODEO, and
Twitter

AJLA–TS White Paper 6

superior for other teams, but we needed a solution
for our team. These days we're all asked to do more
with less. Using Rails is our way to do more.

We believe our success with the resume builder
proves that we have developed a workable method
to port the legacy ColdFusion code into a modern
web application framework. As we port more and
more of the application, the benefits to both
functionality and development velocity will
snowball, allowing AJLA–TS to be more responsive
to our customers’ needs in a marketplace that’s
changing faster than ever.

REFERENCES

1. Daniel Kehoe, “What is Ruby on Rails?” October
11, 2013, http://railsapps.github.io/what-is-ruby-
rails.html.

2. Tim O’Reilly, “Thoughts on the Whitehouse.gov
Switch to Drupal,” O’Reilly Radar, October 25, 2009,
http://radar.oreilly.com/2009/10/whitehouse-
switch-drupal-opensource.html.

3. Sean Kerner, “Why NASA Uses Open Source,”
InternetNews.com, July 20, 2010,
http://www.internetnews.com/skerner/2010/07/w
hy-nasa-uses-open-source-and.html.

4. David A. Wheeler, “Why Open Source
Software/Free Software (OSS/FS, FLOSS, or FOSS)?
Look at the Numbers!” April 16, 2007,
http://www.dwheeler.com/oss_fs_why.html.

5. Tom Mornini, “Here’s Why Ruby on Rails Is Hot,”
Business Insider, May 11, 2011,
http://www.businessinsider.com/heres-why-ruby-
on-rails-is-hot-2011-5.

6. Redkivi Consulting, Ruby on Rails Is for You
[Infographic], http://www.redkivi.com/blogs/ruby-
rails-you (accessed January 7, 2014).

7. Miranda Newbauer, “Open-Source Benefits to
Govt Outweigh Misconceptions, Report Says,”
TechPresident, November 27, 2013,
http://techpresident.com/news/24570/open-

source-benefits-outweigh-misconceptions-report-
says.

8. Ruby on Rails official website, “Quotes,”
http://rubyonrails.org/quotes (accessed January 7,
2014).

http://railsapps.github.io/what-is-ruby-rails.html
http://railsapps.github.io/what-is-ruby-rails.html
http://radar.oreilly.com/2009/10/whitehouse-switch-drupal-opensource.html
http://radar.oreilly.com/2009/10/whitehouse-switch-drupal-opensource.html
http://www.internetnews.com/skerner/2010/07/why-nasa-uses-open-source-and.html
http://www.internetnews.com/skerner/2010/07/why-nasa-uses-open-source-and.html
http://www.dwheeler.com/oss_fs_why.html
http://www.businessinsider.com/heres-why-ruby-on-rails-is-hot-2011-5
http://www.businessinsider.com/heres-why-ruby-on-rails-is-hot-2011-5
http://www.redkivi.com/blogs/ruby-rails-you
http://www.redkivi.com/blogs/ruby-rails-you
http://techpresident.com/news/24570/open-source-benefits-outweigh-misconceptions-report-says
http://techpresident.com/news/24570/open-source-benefits-outweigh-misconceptions-report-says
http://techpresident.com/news/24570/open-source-benefits-outweigh-misconceptions-report-says
http://rubyonrails.org/quotes

AJLA–TS White Paper 7

America’s Job Link Alliance–Technical Support
1430 SW Topeka Boulevard
Topeka, KS 66612
Phone: (800) 255-2458
ajladesk@ajla.net
www.ajla.net

ABOUT AJLA–TS

America’s Job Link Alliance–Technical Support
(AJLA–TS) is the technical support arm of America’s
Job Link Alliance (AJLA), an association of state
workforce agencies dedicated to providing
powerful, affordable workforce development
systems. Headquartered in Topeka, KS, AJLA–TS
provides systems development, maintenance, and
enhancement; hosting; product and customer
support; and user and technical training for local
and state workforce development staff. More
information is available at www.ajla.net.

ABOUT THE AUTHORS

Joe Francis is Application
Development Manager at
AJLA–TS. He has a BS in
computer science and 15 years’
experience as a software
developer and systems
administrator.

Brooke Patterson is an
Instructional Designer at AJLA–
TS. She has a BA in English and
seven years’ experience in
technical communications in
the publishing and software
industries.

mailto:ajladesk@ajla.net
http://www.ajla.net/
http://www.ajla.net/

